National Repository of Grey Literature 11 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Proteomics based approach for identification of enzymes degrading the plant biomass
Romanová, Kristýna ; Ing.Ondřej Kosík, Ph.D. (referee) ; Flodrová, Dana (advisor)
The theoretical part of work is focused on the issue of biomass which can be used for energy purposes, inparticular agricultural waste, as well as can serve as a substrate for biogas station. It also deals with proteomics, its goals and approaches, separation methods. The aim of this work was to measure each sample of enzyme activity of biomass, which are used as a raw materials for biogas plants and their proteomic identification.
Possibilities of encapsulation of particular types of macromolecules and bacteria
Kapar, Jiří ; Obruča, Stanislav (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing encapsulation methods of enzymes and probiotic bacteria. In the theoretical part a summary of different encapsulation techniques used in food industry is given. Further, materials for encapsulation, above all polysaccharides are presented. Next, some procedures of encapsulation of biopolymers and microorganisms – mainly enzymes and probiotic cultures are discussed. In the experimental part methods for preparation of several types of particles based on polysaccharides and liposomes are introduced. Particles were used for encapsulation of selected hydrolytic enzymes and probiotic strains Bifidobacterium breve a Lactobacillus acidophilus. The encapsulation effectiveness was evaluated by analysis of total proteins and enzyme activities. Particles sizes and their stability in water, in selected model foods and model body fluids were observed, too. According to results obtained in this work it was found that encapsulation of enzymes into polysaccharide particles were succesfull in all types of particles (encapsulation effectivness was more than 50 %). Polysaccharide particles showed a very good stability in body fluids as well as in model foods. As the most suitable materials for enzymes encapsulation chitosan and liposomes were found. Polysaccharide particles were used also for the encapsulation of microorganisms. The stability of particles with lactic acid bacteria was similar to particles containig enzymes, very good stability was verified aslo in model foods and model body fluids. Encapsulation enables long-term stabilization of biologically active compounds as well as posibility of their transport and controlled releasing in gastrointestinal tract. Encapsulation of probiotic bacteria could preserve their viability and long-term survival until the product expiration date. Thus, encapsulation is one of the most promissing procedures for production of foods and food suplements of great quality and high additional value.
Utilization of biomass for the energy purposes
Romanová, Kristýna ; Ing.Ondřej Kosík, Ph.D. (referee) ; Flodrová, Dana (advisor)
The theoretical part of work focuses on the issue of biomass used for energy purposes, in particular agricultural waste, which can be used as a substrate for biogas station. Furthermore, examines the composition of polymer substrates, which affects most biogas process. The aim of this work was to measure each sample of enzyme activity of biomass, which is used as a raw material for biogas plants.
Preparation of encapsulated enzymes for cosmetics application
Bokrová, Jitka ; Čarnecká, Martina (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing of an appropriate form of encapsulated enzymes intended for application in cosmetic and pharmaceutical industry. For encapsulation, proteolytic enzymes bromelain, papain and collagenase were used. These enzymes were encapsulated into alginate and chitosan microparticles prepared by an encapsulator and packed into liposomes. Encapsulation effectiveness was evaluated by analysis of total proteins. Particles stability was evaluated in model and real conditions by photometrical analysis of released proteins. Proteolytic activity of released enzymes in model and real conditions were observed too. Alginate and chitosan microparticles prepared by the encapsulator were found as an appropriate form of encapsulated enzymes designed to wound healing. Encapsulation effectiveness of these particles and stability in model conditions were good in comparison with liposomes. Hydrogel and water-oil emulsion were used for analysis of particles stability at real conditions. Hydrogel was found as a good option for preservation of particles as well as proteolytic enzyme activity. Emulsion made particles less stable and proteolytic activity of enzymes decreased rapidly. Encapsulation enables long-term stabilization of biologically active compounds as well as possibility of targeted transport and controlled releasing. Presented diploma thesis suggests possibilities of application encapsulated enzymes in designing more effective formulations for wound healing.
Recombinant expression and functional characterization of plant Kunitz inhibitors
Rybáriková, Renata ; Mareš, Michael (advisor) ; Hlouchová, Klára (referee)
PDI ("potato cathepsin D inhibitor ") and NID ("novel inhibitor of cathepsin D ") from potato (Solanum tuberosum) belong to the protein family of Kunitz inhibitors (I3 family, Merops database). These 20 kDa isoinhibitors with the typical β-trefoil architecture inhibit aspartic and serine peptidases. In this thesis, the constructs for recombinant expression of PDI and NID in the yeast Pichia pastoris system were prepared and high-producing colonies were selected. Both proteins were identified in the cultivation media by mass spectrometry and N-terminal sequencing. A purification protocol for PDI with three chromatographic steps was designed. Analogous functional properties were demonstrated for the purified recombinant PDI and the native PDI isolated from a natural source. Analysis of the inhibitory specificity showed that PDI is a potent inhibitor of selected aspartic peptidases from the A1 family and serine peptidases from the S1 family, including a relevant enzyme of insect origin. This finding supports the hypothesis that Kunitz inhibitors are involved in plant defense against herbivorous insects. The inhibitors prepared within the project will be used for analysis of the reactive centers against target peptidases by protein crystallography. (In Czech) Key words: proteolytic enzymes, activity...
Investigation of proteolytic enzymes expression in different tissues at the transgenic animal model of Huntington disease by means of biochemical and immunohistochemical methods
Kocurová, Gabriela ; Dršata, Jaroslav (advisor) ; Novotná, Eva (referee)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Bc. Gabriela Kocurová Supervisor: Prof. MUDr. Jaroslav Dršata, CSc. Title of diploma thesis: Investigation of proteolytic enzymes expression in different tissues at the transgenic animal model of Huntington's disease by means of biochemical and immunohistochemical methods Background: Huntington's disease (HD) is a neurodegenerative disorder that is caused by an expansion of a polyglutamine (polyQ) domain in the huntingtin (Htt) protein. Because it is known that mutant Htt and especially its small proteolytic fragments are toxic to neurons (particularly those in the striatum and cortex), it has been suggested that proteolysis of mutant huntingtin (mHtt) might play an important role in HD pathogenesis. Therefore, the aim of the present study was to examine the expression of endogenous and mtHtt and possible participation of the proteolytic enzymes from the group of caspases, matrix metalloproteinases (MMPs), kallikreins (KLKs) and calpains in HD pathology of brain tissue. Methods: In this study we used WT and TgHD minipigs for N-terminal part of the human mtHtt (548aaHTT-145Q, both F2 generation, age 36 months; F3 generation, age 48 months in additional experiment), R6/2 mice were used as...
Preparation and biochemical characterization of protease inhibitor equistatin
Polatová, Daniela ; Mareš, Michael (advisor) ; Bořek Dohalská, Lucie (referee)
Equistatin from the sea anemone Actinia equina contains a protein domain Eqd2 which inhibits aspartic peptidases and has not been characterized in detail. Recombinant Eqd2 was produced in the yeast expression system, and a protocol for its chromatographic purification was designed. The inhibitory specificity of Eqd2 was determined using a fluorescence inhibition assay, showing that Eqd2 is a highly selective inhibitor of cathepsin D-like and pepsin-like aspartic peptidases of family A1. Furthermore, size exclusion chromatography was used to analyze the Eqd2-peptidase complex and Eqd2 oligomerization in solution. Initial screening of crystallization conditions for Eqd2 was performed towards its structural analysis. This work provides important new information about Eqd2 as a unique type of natural inhibitors of aspartic peptidases. Its interaction mechanism can be exploited in the development of synthetic mimetics for regulation of medically important peptidases. (In Czech) Key words: peptidase inhibitors, proteolytic enzymes, activity and inhibition of enzymes, recombinant expression, protein purification, protein crystallization, equistatin
Preparation of encapsulated enzymes for cosmetics application
Bokrová, Jitka ; Čarnecká, Martina (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing of an appropriate form of encapsulated enzymes intended for application in cosmetic and pharmaceutical industry. For encapsulation, proteolytic enzymes bromelain, papain and collagenase were used. These enzymes were encapsulated into alginate and chitosan microparticles prepared by an encapsulator and packed into liposomes. Encapsulation effectiveness was evaluated by analysis of total proteins. Particles stability was evaluated in model and real conditions by photometrical analysis of released proteins. Proteolytic activity of released enzymes in model and real conditions were observed too. Alginate and chitosan microparticles prepared by the encapsulator were found as an appropriate form of encapsulated enzymes designed to wound healing. Encapsulation effectiveness of these particles and stability in model conditions were good in comparison with liposomes. Hydrogel and water-oil emulsion were used for analysis of particles stability at real conditions. Hydrogel was found as a good option for preservation of particles as well as proteolytic enzyme activity. Emulsion made particles less stable and proteolytic activity of enzymes decreased rapidly. Encapsulation enables long-term stabilization of biologically active compounds as well as possibility of targeted transport and controlled releasing. Presented diploma thesis suggests possibilities of application encapsulated enzymes in designing more effective formulations for wound healing.
Possibilities of encapsulation of particular types of macromolecules and bacteria
Kapar, Jiří ; Obruča, Stanislav (referee) ; Márová, Ivana (advisor)
Presented diploma thesis is focused on testing encapsulation methods of enzymes and probiotic bacteria. In the theoretical part a summary of different encapsulation techniques used in food industry is given. Further, materials for encapsulation, above all polysaccharides are presented. Next, some procedures of encapsulation of biopolymers and microorganisms – mainly enzymes and probiotic cultures are discussed. In the experimental part methods for preparation of several types of particles based on polysaccharides and liposomes are introduced. Particles were used for encapsulation of selected hydrolytic enzymes and probiotic strains Bifidobacterium breve a Lactobacillus acidophilus. The encapsulation effectiveness was evaluated by analysis of total proteins and enzyme activities. Particles sizes and their stability in water, in selected model foods and model body fluids were observed, too. According to results obtained in this work it was found that encapsulation of enzymes into polysaccharide particles were succesfull in all types of particles (encapsulation effectivness was more than 50 %). Polysaccharide particles showed a very good stability in body fluids as well as in model foods. As the most suitable materials for enzymes encapsulation chitosan and liposomes were found. Polysaccharide particles were used also for the encapsulation of microorganisms. The stability of particles with lactic acid bacteria was similar to particles containig enzymes, very good stability was verified aslo in model foods and model body fluids. Encapsulation enables long-term stabilization of biologically active compounds as well as posibility of their transport and controlled releasing in gastrointestinal tract. Encapsulation of probiotic bacteria could preserve their viability and long-term survival until the product expiration date. Thus, encapsulation is one of the most promissing procedures for production of foods and food suplements of great quality and high additional value.
Proteomics based approach for identification of enzymes degrading the plant biomass
Romanová, Kristýna ; Ing.Ondřej Kosík, Ph.D. (referee) ; Flodrová, Dana (advisor)
The theoretical part of work is focused on the issue of biomass which can be used for energy purposes, inparticular agricultural waste, as well as can serve as a substrate for biogas station. It also deals with proteomics, its goals and approaches, separation methods. The aim of this work was to measure each sample of enzyme activity of biomass, which are used as a raw materials for biogas plants and their proteomic identification.

National Repository of Grey Literature : 11 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.